TEMPO

Acceleration & Grouping Practices
The resources at TAMS helped me start my nonprofit.

“TAMS steered me toward my goal of setting up self-sustaining clinics to improve health around the globe. Through the College of Business and the UNT community, I was able to donate more than $3,000 in medical supplies to a clinic in Venezuela and explore my interest in medicine there.”

— Alberto Him
TAMS student and
CEO, EverCare Medical Foundation

UNT’s Texas Academy of Mathematics and Science — the nation’s first residential program for gifted teens to complete their first two years of college while earning high school diplomas — launches research careers for exceptionally talented students.

tams.unt.edu
Not very long ago, I entered a kindergarten classroom to observe a teacher who was providing instruction in literacy. Reportedly, students were grouped at tables according to ability. As I observed, I noticed that the children were working independently on worksheets at their tables until it was their group's turn to join their teacher on a mat at the front of the classroom where they received direct instruction in phonics. The direct instruction involved the teacher taking the students through a deck of cards that focused on phonemes. At first, I thought perhaps each group would receive different instruction when it was their turn to go to the mat and work with the teacher and that the worksheets being completed by students at the various tables might be different based on preassessments. I was incorrect. In fact, as I walked around the room to observe the children working at their tables, I quickly noticed that every child was completing the same cut-and-paste worksheets. In addition, as groups of children rotated through the direct teach center, they were guided through the same deck of phonics cards and received the same instruction by the teacher.

The scenario I have described concerned me for various reasons, but I want to share the story of one particular student who sat at a table at the back of the room. Her group had not yet rotated to the mat to work with the teacher and, yet, she had easily and correctly completed all three of her cut-and-paste worksheets, which involved cutting out three letters and gluing them on the page to make words to match pictures on the sheets. When she finished her worksheets, she reached into her desk, got out a book, and began to read. I asked her what she was reading, and she explained that Judy Blume was her favorite author and she was “currently reading Superfudge.” She went on to explain that Tales of a Fourth Grade Nothing was actually her favorite book by Judy Blume (out of the ones she had read so far) and to tell me why she enjoyed that book so much. Soon after my brief conversation with this youngster, her group was called to the front of the room for direct instruction with the teacher, during which time she worked with the other students in her group to identify phonemes in three-letter words.

I share this one example to encourage educators and parents to consider searching their hearts as well as the literature in light of a couple of questions: (a) What are the positive and negative aspects of accelerating bright children in their area(s) of strength? (b) Does grouping children as a form of acceleration make any difference if the instruction is not differentiated to be commensurate with the academic achievement of the students?

Ten years ago, A Nation Deceived: How Schools Hold Back America’s Brightest Students (Colangelo, Assouline, & Gross, 2004) was published. This two-volume publication provided valuable information regarding the various forms of academic acceleration and its benefits when used with bright students; however, according to Assouline, Fosenburg, & Schabilion (2014), “acceleration remains an underused intervention” (p. 12). Soon, A Nation Empowered: Evidence Trumps the Excuses That Hold Back America’s Brightest Students (Assouline, Colangelo, & VanTassel-Baska, 2015) will be published. In this issue of TEMPO, Susan Assouline, Staci Fosenburg, and Katherine Schabilion describe interesting aspects of this upcoming publication and invite TEMPO readers to participate in research to advance knowledge in the area of acceleration. In addition to the article introducing A Nation Empowered, Linda Lucksinger contributes an article entitled The Need for Speed and Yara Farah, Sonia Parker, and Susan Johnsen share What the Research Says About Acceleration and Grouping Practices. I want to thank these authors and researchers for sharing of their time and talent to advance the knowledge of TEMPO readers and help us to answer some questions about acceleration and grouping practices Continued on page 29
For more than 35 years, the Texas Association for the Gifted & Talented has provided invaluable support to and a voice for the gifted community in Texas. As a successful cause-driven organization, TAGT strives to build on the strong foundation of the past, yet thoughtfully evolve and guide messaging for the future. One of the current strategic initiatives established by the TAGT Board of Directors is to “evaluate and stabilize a brand that establishes an awareness of our association and communicates our message effectively.” To achieve this strategy, a group of TAGT members and supporters engaged in a comprehensive process that resulted in a sharpened messaging platform and logo revision that more clearly communicates TAGT efforts.

In his book, *Start With Why*, author and thought leader Simon Sinek writes “Very few people or companies can clearly articulate WHY they do WHAT they do. By WHY I mean your purpose, cause or belief—WHY does your company exist? WHY do you get out of bed every morning? And WHY should anyone care?”

We are excited that our new messaging platform and the visual representation of our logo more effectively communicates our “WHY.” For you, our members, we hope that the message will inspire you and provide powerful language to help you communicate your own “why” to others regarding your passion for gifted students.

If you look closely at the new logo, you will notice three elements that work together to tell our story. In the logo mark, the design isn’t simply an interesting graphic—it is actually four synapses joined together. The use of the synapse represents the unique ways gifted students process information and perceive the world. The number of synapses used isn’t random; they represent four primary stakeholder groups involved with TAGT: K–12 educators, parents, university leaders, and students. And finally, the color gradient is designed to communicate forward movement and continued development of our students, our association, and the field of gifted education.

TAGT introduced the new brand at the 2014 Annual Conference in December and we are pleased to share this with you here.

Texas Association for the Gifted & Talented

TAGT connects and empowers educators and parents to meet the unique needs of gifted and talented students from every cultural background who see the world in unique ways and are developing minds that just might discover innovative answers to the most challenging questions of their generation.

Thinking Beyond

TAGT provides tools and resources to inspire students to fulfill their unique potential—beyond subject matter and grade level expectations.

Creating Connections

Involvement in TAGT is the most powerful way to guide gifted students in schools and in homes.

Shaping Opportunities

By leading relevant conversations, TAGT promotes awareness of effective gifted education strategies and the limitless possibilities represented in G/T students.

Join with TAGT as we move forward and continue to positively impact the lives of the gifted and talented.
FROM
A NATION
DECEIVED
TO
A NATION
EMPowered
A NEVER-ENDING STORY

SUSAN ASSOULINE, PH.D., STACI FOSENBURG, AND KATHERINE SCHABILION
This Tempo Article coincides with the 10th anniversary of the two-volume publication, A Nation Deceived: How Schools Hold Back America’s Brightest Students (Colangelo, Assouline, & Gross, 2004). A Nation Deceived, funded by the John Templeton Foundation, was the springboard for a series of Templeton-funded projects, including the translation of Volume I of A Nation Deceived into nine languages; the establishment of the Institute for Research and Policy on Acceleration (IRPA); and the publication of Guidelines for Developing an Academic Acceleration Policy (IRPA, NAGC, & CSDPG, 2009). The original goal for A Nation Deceived was to create a publication that would go to multiple stakeholders, including educators, school board members, and legislators, for the express purpose of initiating or expanding the conversation about the academic intervention of acceleration. The purpose of this article is to briefly review A Nation Deceived and the spin-off products, all of which have contributed to the newest installment of our “never-ending story” about academic acceleration, A Nation Empowered: Evidence Trumps the Excuses That Hold Back America’s Brightest Students (Assouline, Colangelo, VanTassel-Baska, & Lupkowski-Shoplik, in press).

INTRODUCTION

Academic acceleration is a simple and effective educational intervention that allows high-ability students to progress through an educational program at a rate faster or at an age younger than typical (Pressey, 1949). Schiever and Maker (2003) considered the intervention to be both a curriculum...
model (students receive advanced curriculum at a faster pace) as well as a service delivery model (students receive services at a younger than typical age). A concise, yet very thorough presentation of the 18 types of acceleration, as well as the issues associated with the intervention, are presented by Southern and Jones (2004). Ironically, academic acceleration is among the most-researched interventions for academically able students, yet it is the least used. Gallagher (2004) asked, “How can we account for the lack of educational action in the face of the positive [research] reactions to programs and their positive evaluation findings?” (p. 49). Indeed, it is the discrepancy between the research support for acceleration and the lack of policy and implementation that was the impetus for the John Templeton Foundation to fund Colangelo, et al. (2004) to produce A Nation Deceived, the two-volume report that coalesced five decades of research on acceleration. Volume I synthesized the research-based articles that were published in Volume II, the edited volume. Volume I was generated to address the misconceptions that were holding back educators from offering the academic intervention known to be most effective for high-ability students. Both Volume I and Volume II of A Nation Deceived were created to change the conversation from myth-based discussions to evidence-based decisions. A prime example of an acceleration myth is that students will experience psychological distress if they are placed with older students. In contrast to myth-based decisions, educators are encouraged to make informed decisions based upon research presented in Volume II of A Nation Deceived (e.g., “None of the [acceleration] options has been shown to do psychosocial damage to gifted students as a group; when effects are noted, they are usually [but not invariably] in a positive direction” [Robinson, 2004, p. 64]).

THE GROWTH OF AWARENESS

A Nation Deceived (Colangelo et al., 2004) was intended for a U.S. audience; however, given that one of the authors, Miraca Gross, was affiliated with the University of New South Wales in Sydney, Australia, and in light of the multiple international colleagues of Colangelo, Assouline, and Gross, the John Templeton Foundation recognized that the potential impact could extend beyond the U.S. borders. The Belin-Blank Center received a grant to translate Volume I into nine languages (see Table 1). The English version of Volume I is available at no cost on the iTunes store. All versions of Volume I are available on the University of Iowa’s Belin-Blank Center website (http://www2.education.uiowa.edu/belinblank/researchers/).

As evidenced in Table 1, the impact of Nation Deceived has gone well beyond the reach of the 50 United States.

The Institute for Research and Policy on Acceleration

The Belin-Blank Center was awarded funding (2006–2012) from the John Templeton Foundation to establish the Institute for Research and Policy on Acceleration (IRPA; www.accelerationinstitute.org). Although no longer funded by the John Templeton Foundation, IRPA remains a central component to the Belin-Blank Center’s mission. The IRPA website hosts a comprehensive annotated bibliography, which is continuously updated and revised. The most recent revision paid particular attention to the anticipated Spring 2015 release of A Nation Empowered (Assouline et al., 2015) by assigning topical, rather than methodological, categories based on the subjects to be covered in the report. During the 2014–2015 academic year, a number of other features on the IRPA website were continuously updated, including the state policy map and the Question & Answer page. The IRPA website also hosts several resources for educators and policy-makers including Guidelines for Developing an Academic Acceleration Policy (IRPA, NAGC, & CSDPG, 2009), which is especially critical to IRPA’s mission to serve as a clearinghouse for research and policy on acceleration.

Guidelines for Developing an Academic Acceleration Policy

In a collaborative effort, IRPA,
NAGC, and the Council of State Directors of Programs for the Gifted (CSDPG) published Guidelines for Developing an Academic Acceleration Policy in 2009 (http://www.accelerationinstitute.org/Resources/Policy_Guidelines/). The Guidelines document provides policy-makers with examples and checklists aimed at supporting efforts to write acceleration policy. Policy is important because it formalizes opportunities for the variety of academic interventions available to educators and administrators.

Other Resources

Once policy is in place, how does an educational team make the decision to implement the intervention? The IRPA website offers information about the Iowa Acceleration Scale 3rd Edition (Assouline, Colangelo, Lupkowski-Shoplik, Lipcomb, & Forstadt, 2009), which is a decision-making measure to help schools make objective and effective decisions regarding whole-grade acceleration for students in K–8. The IAS guides a child-study team that includes current and receiving teachers, the gifted facilitator, the school counselor, other professionals, and the parents. The IAS, which pre-dates Nation Deceived by several years, was developed for whole-grade acceleration, although the sections (e.g., consideration of a student’s ability, aptitude, achievement, social-emotional status, and various other developmental factors) are relevant for single-subject acceleration as well. Building upon the success of the IAS, the Belin-Blank Center also has developed an online tool for single-subject acceleration in math or science, IDEAL Solutions® for STEM Acceleration (http://www.idealssolutionsmath.com/).

CURRENT STATE OF ACADEMIC ACCELERATION IN THE U.S.

Ten years after the publication of A Nation Deceived (Colangelo et al., 2004), it is apparent that much has been done . . . but there is still much to do. The most recent State of the States in Gifted Education 2012–2013 (CSDPG & NAGC, 2013) reported little change with regard to state policy on acceleration over the past several years. On a positive note, only one state (Louisiana) out of the 42 states that responded in 2012–2013 to the survey items used to generate the report does not permit acceleration. Nine states (an increase of one state over a 5-year period) specifically permit acceleration; 11 states (an increase of four states) leave the decision to local education agencies (LEAs); and 21 states (a decrease by seven states) have no specific policy, thus, leaving it to the LEAs to determine. Even among states that permit acceleration and/or leave it up to the LEAs, the application of policy varies widely. For example, there are many variations of early entrance to Kindergarten policies, and the date by which students must be 5 years old in order to be enrolled in Kindergarten is inconsistent across states and LEAs.

A PRIME EXAMPLE OF AN ACCELERATION MYTH IS THAT STUDENTS WILL EXPERIENCE PSYCHOLOGICAL DISTRESS IF THEY ARE PLACED WITH OLDER STUDENTS.

INFORMED GROWTH AND EXPANSION: A NATION EMPOWERED

A Nation Deceived (Colangelo et al., 2004) was created to initiate a new dialogue and/or change the conversation about the implementation of acceleration. A Nation Empowered: Evidence Trumps the Excuses That Hold Back America’s Brightest Students (Assouline et al., 2015) offers additional evidence and highlights the facts countering the misconceptions that seem to continue to hold people back from implementing this educational option. The main stakeholders in the educational arena—students and teachers—can now go beyond dialogue about the relevance of academic acceleration because they are empowered to make evidence-based decisions about appropriate academic interventions for highly capable students.

All chapters originally in Volume II of A Nation Deceived have been updated and, in some cases, new authors have been brought on board. Several new chapters have been included to reflect the change in the educational landscape over the past ten years. The new chapters and/or new authors are listed in Table 2.

A SNEAK PEEK AT VOLUME II

Research Synthesis

Karen Rogers’s (2015) chapter, entitled “The Academic, Socialization, and Psychological Effects of Acceleration: Research Synthesis Update,” builds and expands upon her chapter in A Nation Deceived (Rogers, 2004) and her analysis from 1990 to 2008 (Rogers, 2010). The original chapter remains highly informative; however, the updated chapter provides even stronger evidence of the academic, psychological, and social benefits of academic acceleration for school-aged students. Rogers’s update offers a very strong link between the research about the various forms of whole-grade or single-subject acceleration and the practice. Of particular importance are the findings on social and psychological outcomes, which, as Rogers explains, were not previously reported as consistently as they are in the updated chapter. Rogers’s chapter is thorough and professional, taking the researcher and educator through an extensive discussion of the method-
technology involved in her research as well as the statistical indicator, effect size, which provides empirical support for whether or not an intervention makes a difference. Rogers concludes that “The research on academic acceleration since 2008, as reported [in the to-be-published chapter], provides educational decision-makers with a large, research-supported menu of accelerative options that have been demonstrated to result in substantial academic achievement for gifted learners.”

Table 3 reveals that all forms of whole-grade acceleration, early admission to university, grade skipping, and radical acceleration are effective. The most effective form seems to be whole-grade acceleration. The academic effect size of .67 that was reported for whole-grade acceleration can be meaningfully interpreted in terms of academic growth in months. An effect size of .67 is equivalent to academic growth of almost seven months. The effect size of 1.56 for Saturday classes on a university campus represents one and a half years’ additional growth beyond the expected growth of one year’s achievement within that year.

Impact of Academic Acceleration on Adult Careers

Whereas Rogers’s chapter provides a research update since the publication of *A Nation Deceived*, Katie McClarty’s (2015) chapter, “Early to Rise: The Effects of Acceleration on Occupational Prestige, Earnings, and Satisfaction,” presents a new area of exploration. McClarty compared two groups of high-ability individuals: those who were accelerated and those who were not. The accelerated individuals had more prestigious occupations and were more successful. They also earned more and increased their income more rapidly than peers with similar ability who were not accelerated. McClarty’s and Rogers’s chapters offer only a brief preview of the strong evidence base for acceleration to be detailed in the pages of *A Nation Empowered*.

Professional Development

Understanding the research is critical to the professional development of educators and other support staff. For this reason, Laurie Croft and Susannah Wood (2015) have contributed a chapter in the new publication that explores possibilities for professional learning to help educators and school counselors better understand issues and strategies of acceleration. These authors make salient the finding that current trends in professional development are often inappropriate for educators interested in utilizing acceleration to meet the needs of gifted learners. They present a vibrant model of professional development, the Belin-Blank Dynamic Model of Professional Development (Assouline,
Blando, Croft, Baldus, & Colangelo, 2009) to promote a change process for practitioners, who are often isolated in buildings where no other professionals share their educational philosophy. Croft’s and Wood’s chapter provides strategies for professional learning that include both reflection and enactment of acceleration options.

YOU CAN ADD YOUR VOICE TO NATION EMPOWERED

Volume I of *A Nation Deceived* was comprised of 13 very concise chapters ranging from “America Ignores Excellence” to “How Teachers Can Help.” In particular, suggestions were included to show teachers how they could help change the climate surrounding academic acceleration and gifted education (Colangelo et al., 2004). That volume also included interviews with two college of education deans regarding their opinions about practices surrounding acceleration and the preparation of educators to work with gifted students. The emphasis on gifted education has increased significantly over the past decade (Duffet, Farkas, & Loveless, 2008). However, educator training and preparedness seem not to have caught up. In the process of generating A Nation Empowered, the editors realized that important voices were missing from this discussion of acceleration practice: those of the teachers. The editorial team immediately took action to help make these voices heard. A Nation Empowered is in press; however, because it will be available both in print and digitally, there will be periodic updates, which means that educators still can be involved—read on!

Focus Groups and Surveys Give Voice to Educators

During summer 2014, the Belin-Blank Center hosted a variety of professional development programs in the area of gifted education and best practices. These programs, which typically consisted of 30–40 individuals, provided an opportunity to begin to explore how gifted educators experience academic acceleration in their schools. Several focus groups were conducted, during which educators were invited to provide input about their training for working with gifted and talented students as well as how they view acceleration in educational settings.

The focus groups were an excellent way to gauge the local climate, but clearly were not a sustainable model for assessing the national climate. However, the responses in the focus groups helped guide the development of a survey with more targeted questions. Some common themes that emerged from the focus groups included: (a) teachers felt they received little instruction during their undergraduate training in how to identify and meet the educational needs of gifted students; (b) educators felt that their communities still believed acceleration to be detrimental socially and emotionally for children; (c) few educators knew the full spectrum of acceleration options available; and (d) nearly all of the educators felt that their school districts failed to offer them support to enhance their competence for providing gifted education.

Based on the themes identified above, the survey addresses several areas related to gifted education. Some of the major topics address the ways in which individuals have been or are being prepared to teach gifted learners. This survey, which takes 10–15 minutes to complete and is designed to adapt for specificity depending on the individual taking it, is also intended to gather information about the breadth and depth of knowledge regarding the practice of academic acceleration in its varying forms.

The interview of two college deans that was presented in *A Nation Deceived* was fruitful. However, *A Nation Empowered* aims to provide insight into the preparation and direct experience of those professionals who work with the students. If you would like to help inform *A Nation Empowered* by sharing your perspective, please visit the link below to complete the survey: https://uiowa.qualtrics.com/SE/?SID=SV_431Yd3WwTogy9rD.

Table 3. Highlights From Tables 2 and 3 in Rogers’s to-Be-Published Chapter

<table>
<thead>
<tr>
<th>Acceleration Option</th>
<th>Type of Effect</th>
<th>Number of Studies</th>
<th>Number of Outcomes</th>
<th>Mean Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early admission to university</td>
<td>Academic</td>
<td>10</td>
<td>23</td>
<td>+0.23</td>
</tr>
<tr>
<td></td>
<td>Social Adjustment</td>
<td>4</td>
<td>6</td>
<td>+0.18</td>
</tr>
<tr>
<td>Grade Skipping</td>
<td>Academic</td>
<td>5</td>
<td>8</td>
<td>+0.67</td>
</tr>
<tr>
<td></td>
<td>Social Adjustment</td>
<td>4</td>
<td>4</td>
<td>+0.34</td>
</tr>
<tr>
<td>Radical Acceleration</td>
<td>Academic</td>
<td>4</td>
<td>5</td>
<td>+0.61</td>
</tr>
<tr>
<td></td>
<td>Social Adjustment</td>
<td>4</td>
<td>10</td>
<td>+0.18</td>
</tr>
<tr>
<td>Saturday Classes on University Campus</td>
<td>Academic</td>
<td>1</td>
<td>1</td>
<td>+1.56</td>
</tr>
<tr>
<td>Compacting</td>
<td>Academic</td>
<td>1</td>
<td>18</td>
<td>+0.20</td>
</tr>
</tbody>
</table>

This table reports selected mean effect sizes for academic and social adjustment effects for the three grade-based acceleration options and for the highest and lowest academic effects of subject-based options.
THE CONTINUING STORY

The title, *A Nation Deceived: How Schools Hold Back America’s Brightest Students*, was provocative by design. *A Nation Empowered: Evidence Trumps the Excuses That Hold Back America’s Brightest Students* is meant to be equally strong, as well as proactive in advancing a philosophy that reflects the transformation, through knowledge and information, of our ability to demonstrate an action-oriented focus based on full awareness and competence related to the intervention.

The various forms of academic acceleration occur within an educational environment. That environment includes a robust background in enrichment programming, a continuing interest in serving the needs of all students through differentiation, and constant educational reform efforts, the most recent of which are focused on the core curriculum.

Despite the advances and impact of *A Nation Deceived* and the Institute for Research and Policy on Acceleration, acceleration remains an underused intervention. Many administrators still consider current practices, such as enrichment and differentiation, to be sufficient. Indeed, the recent focus on the core curriculum for reading and math and new standards for science represent the most recent excuse for not implementing acceleration. Educators are indicating that administrators are promoting the core curriculum as a sufficient intervention for gifted students.

The core curriculum, while increasing accountability and ensuring more consistency across districts and states, was not developed with the gifted learner in mind. Highly able students will need challenges that exceed the limits of the core curriculum.

Enrichment programming was and remains the most-used service delivery approach for gifted students (CSPDG & NAGC, 2013). For too long enrichment has been perceived as the “opposite” of acceleration. That attitude sets up an unrealistic dichotomy that ignores the many tools now available to educators.

Enrichment programming provides “richer, more varied educational experiences, a curriculum that has been modified or added to in some way” (Schiever & Maker, 2003, p. 164). Enrichment programs are common in schools and typically strive to add depth and breadth to the regular curriculum through resource rooms and/or special interest clubs. However, most enrichment programming is not focused on providing access to accelerated curriculum.

In addition to enrichment-focused programming, some schools adopt differentiation as an approach to serving the needs of all students. Differentiation is a modification of both the curriculum and instructional delivery to meet the diverse learning needs of students in classrooms (Tomlinson & Strickland, 2005). However, the scope of individual differences and academic needs in a single classroom, especially at the elementary and middle-school level, may exceed most classroom teachers’ level of expertise (e.g., advanced content in science and math) and training or experience (Hertberg-Davis, 2009).

The more closely enrichment and differentiation match the ability and interests of the students, the more they approximate the intervention of academic acceleration. However, enrichment and differentiation must include a faster pace and higher level of content to have the same positive impact as acceleration. Reform models, such as the Common Core State Standards, which are driving the core curriculum, are models that were not developed for the highly able student and cannot be considered to be responsive to the high-ability student’s developmental needs. Academic acceleration, in all its forms, represents an educational intervention that is based upon the developmental needs of the student. *A Nation Deceived: How Schools Hold Back America’s Brightest Students* (Volumes I and II; Colangelo et al., 2004) started the conversation. *A Nation Empowered: Evidence Trumps the Excuses That Hold Back America’s Brightest Students* not only continues the dialogue, but is action-oriented so that all stakeholders have, at their fingertips, the knowledge and tools to make the right decisions about high-ability students.

REFERENCES

Hertberg-Davis, H. (2009). Myth 7: Differences in the regular classroom is equivalent to gifted programs and is sufficient: Classroom teachers have the time, the skill, and the will to differentiate adequately. Gifted Child Quarterly, 53, 251–253.

Susan Assouline, Ph.D., is a professor in the School Psychology program at The University of Iowa (UI) and the director of the UI Belin-Blank Center. She is co-developer of The Iowa Acceleration Scale (2009; with Nicholas Colangelo, Ann Lupkowski-Shoplik, Jonathan Lipscomb, & Leslie Forstadt), a tool designed to guide educators and parents through decisions about accelerating students. In 2004, she co-authored, with Nicholas Colangelo and Miraca U. M. Gross, A Nation Deceived: How Schools Hold Back America’s Brightest Students.

Staci Fosenburg is a third-year doctoral student in the Counseling Psychology Program at The University of Iowa. She is pursuing professional interests in working with children and adolescents at the Belin-Blank Center for Gifted Education and Talent Development, where she serves as a graduate assistant and practicum student. Staci’s research interests include resource provision for gifted learners, the impact of twice-exceptionality on socioemotional development, and autism spectrum disorders.

Katherine Schabillion is a second-year student in the School Psychology Program at The University of Iowa. She is interested in studying the needs of gifted and twice-exceptional students. She is also involved in research regarding the use of acceleration as an academic intervention.
Imagine that you have been given a beautiful, bright, shiny, high-performance sports car as a birthday gift. You are thrilled, excited, and eager to take it on the road for a spin. You get in and off you go down the street. At the red light you can't help but race your engine. You enjoy the admiring glances you get from other motorists. You notice how beautiful, sleek, and special your car is compared to the others. You look at the little Volkswagen bug next to you at the red light and at the big lumber truck on the other side. As you travel down the road you become impatient. The traffic is too slow, and you can't get the full benefit of speed out of each of your gears. You are anxious to get out to the open road and "open her up," unwind, and let go at top speed. You know if you are patient, the trip through town and traffic and red lights will end and then you'll be on the highway. So you continue to enjoy the admiring and sometimes envious glances you get from the other motorists. Soon, very soon, you're sure, you'll make it to that open road. But, alas, a traffic jam! As your sport car idles in the stalled traffic, it begins to overheat. You see, sport cars with high-performance engines are not constructed for idling or slow pacing; it can do serious damage to their engines to overheat. You become concerned and wonder if maybe you should just turn the engine off to protect it while you wait. Just as you are about to shut it down the traffic begins to move; the pace quickens and the engine temperature decreases. Whew! You think, “That was a close one!”

Up ahead you see the on-ramp to the Interstate. You are excited—now you can step on it and really fly! Off you go roaring down the highway, weaving in and out, passing everyone in sight. What joy! What exhilaration! Your spirits soar! . . . but, what’s this? Shiny lights flash, a siren screams. What? Me? They want to stop ME? As the officer pulls you over to the side, you have that horrible anxiety attack. Your once high spirits are dashed. You feel terrible. You have knots in your stomach and feel so guilty. You’d been told and had seen the signs. There was a speed limit, you knew that, but this car was meant to move. It’s not fair! Why have such a lovely, wonderful gift, if you can't use it the way it was designed? The officer issues you a ticket, an expensive one, because you really exceeded the acceptable limit. Now you must pay the price. If you had conformed in the first place, you would have avoided the unhappy experience. Now as you drive back to town, you are careful to keep pace with everyone else. It's not fun driving this sport car now. As you return home, you consider what you should do: Park the car and use it occasionally? Sell it and get something out of it? Park it and never use it? What to do?

You tell your story to friends and family. Some say forget it, sell it, and get a car like mine. Others say join a sport car club, go with the club to the special track each week and drive your car like you know it needs to be driven. Besides, at the sport car club, you will be with others that you can talk to and who have a real interest in cars like yours. They can teach you a lot about your new car so you can get more enjoyment out of it. The track is there especially for driving fast and trying new techniques and for learning some safety and survival skills related to driving a high-performance car. You can meet experts, talk to the pros. The decision is yours. Do you keep your gift and enjoy it, or do you keep it and deny yourself the pleasure of it? Or maybe you give up altogether?

This is the gifted and talented (GT) child, the gifted learner. They have a need for speed, an urgency to know, a desire to gather information, to develop and use skills, and to engage with their talents. Many of them are “speed freaks.” They enjoy the ride, with the top down and the wind in their hair. When their need for speed is not met, some may idle, shut down, shift to a lower gear, or garage themselves. Our gifted children are like the high-performance sport car. Their birthday presents are their special gifts and talents. We can predict that at some points in their academic life gifted students will experience frustration and anxiety due to a lack of academic speed. You know them. Here is Robbie, always in trouble for not settling down, asking too many questions, finishing one task and ready for another before the teacher has the rest of the class starting it. He plays games and invents new rules to old games to stay stimulated. Then there are Brenda and Philip wanting to do things their way, which does not always coincide with the teacher’s way, often refusing to cooperate, and eventually giving up and shutting down. And maybe you have met Victoria, well-liked by peers, teachers, and adults, Acceleration in any form provides excitement and relief to those who are languishing in an academic traffic jam.
but no support for her talents at home and very little encouragement from school to develop her skills. However, the community leaders have noticed her abilities and stepped in as mentors and outside school opportunities allow her to soar. According to Clark (2013), “gifted students learn faster and process information more quickly. It would be as unfair to ask a gifted student to slow down this process as it would be to require a slower learner to think more quickly; neither student can do what is being asked” (p. 155). Whether it is a Robbie, a Victoria, a Philip, or a Brenda, one way to support their need for speed is through acceleration.

Acceleration, as a programming option, is a must for most of our gifted and talented learners. The need for it and the benefits to students are not disputed (Colangelo, Assouline, & Gross, 2004; Hargrove, 2012; Piirto, 2007; VanTassel-Baska & Sher, 2011). A variety of acceleration programming options allow gifted learners to satisfy their need for speed. A Nation Deceived: How Schools Hold Back America’s Brightest Students, Volume II (Colangelo et al., 2004) covers 18 types of acceleration. For best results, the type or form of acceleration must be matched to the individual learner and her situation. This requires the teacher or educator to know and understand the uniqueness of each gifted learner. This can be challenging. The diversity within the gifted student population is broad and deep, yet each student has her own need for speed.

Fortunately, since the publication of A Nation Deceived (Colangelo et al., 2004), those interested in and concerned for gifted students are continuing to provide more research and information. One group of researchers examined the effects of acceleration on minority gifted students (Lee, Olszewski-Kubilius, & Peternal, 2010). Using structured interviews with elementary, middle school, and high school gifted students and their teachers, these researchers examined the efficacy of acceleration in an attempt to find out how to help the younger students prepare for advanced tracks in high school mathematics. Results indicated that these mathematically talented students had enhanced motivation and confidence and enjoyed the intellectual challenge that accelerated learning provided in this particular program (Project EXCITE). In addition, the seven educators (teachers and administrators) involved generally supported acceleration for academically gifted learners but were also aware that the way acceleration is implemented must be based on the needs of the individual students. “The minority students viewed taking accelerated math courses as exciting, beneficial, and challenging and liked working ahead having a ‘leg up’ compared to other students” (Lee et al., 2010, p. 202). This appears to support their need for speed.

According to Renzulli (2011), “low income and minority students continue to be underrepresented in gifted programs” (p. 61). Often these students are underrepresented due to poor identification of their skills and talents and a mismatch with the gifted program goals and objectives in their schools. These might be the ones that stall out and exit the academic highway (i.e., drop out). Some will find ways to accelerate on a different highway, but that journey may not always be one with a positive productive outcome.

In another study, Cohen (2011) examined the creatively gifted person related to acceleration, “Natural acceleration happens through an internal fire that burns to learn and may transcend school boundaries” (p. 218). Cohen advocated for different types of acceleration, motivated by the child’s interests. The author discussed two eminent Brazilian brothers and their creative endeavors. She believed the creatively gifted person must follow his own path allowing for his own acceleration, not structured by the school. Driven by his own desires, this may mean some type of acceleration outside the academic environment. Cohen stated that good school academic gifted programs offer limited curricula, even the accelerated ones. This is why talent development should not be overlooked when considering how to help creatively gifted students accelerate.

Cohen’s (2011) longitudinal study of 72 highly able infants and children resulted in her belief “that teaching toward interest themes is a natural motivator for student learning” (p. 219). Even in academic acceleration when the child’s “internal quests are satisfied” (p. 220), their creative needs may also be met. Acceleration as a programming option is able to support the characteristic of curiosity, persistence, highly developed language skills, abstract thinking, keen sense of humor, heightened sense of self-awareness, emotional depth and intensity, advanced cognitive abilities, and other characteristics we associate with the gifted and talented learner. Acceleration in any form provides excitement and relief to those who
are languishing in an academic traffic jam. Ones size does not fit all.

As educators examine their ability to match GT learner needs with the GT programs in their schools, part of the needs assessment should be teacher or educator attitudes about acceleration. Each component in GT services must be able to support those learner needs.

Siegle, Wilson, and Little (2013) explored administrator and teacher attitudes about acceleration using their “Table 1: 12 Reasons Why Acceleration Isn’t Accepted in America” (p. 28). The authors stated that these 12 reasons were gleaned from A Nation Deceived: How Schools Hold Back America’s Brightest Students” (Colangelo et al., 2004). Siegle et al. (2013) were interested in why acceleration continues to be “a controversial and underutilized strategy” (p. 28). The authors surveyed 152 educators at a summer conference on the gifted and talented at a university setting known more for promoting GT enrichment. A sampling of the study’s results is provided. For details the reader is encourage to read the entire report. In response to whether or not acceleration meets the needs of gifted learners, most respondents agreed; 80% indicated that acceleration did not harm the gifted learner’s GPA; 91% believed accelerated students would not have difficulty with new content; the majority believed that early college entry was not a problem and students would have more college opportunities; and 74% of teachers were concerned that students would be bored in their new classes. The respondents’ results were mixed with respect to emotional concerns. Thirty-six percent were undecided as to whether acceleration lowered students’ self-esteem; 9% believed accelerated students were not happy with their lives; 33% were undecided if accelerated students were not happy with their lives; and 55% did not believe accelerated students were arrogant. The authors noted that it was unclear whether these teachers related emotional concerns to acceleration or to high-ability students in general.

Siegle et al. (2013) also looked at the area of social concerns. The results indicated that a majority of these teachers felt accelerated students got along with new classmates and were able to relate to them; however, 27% were undecided about this issue, and 28% disagreed that accelerated students were socially well adjusted. In addition, 48% were undecided or believed that accelerated students were lonelier than others, and 18% believed accelerated students were unpopular. A solid majority of the respondents did not have concerns about developmental and age-related issues. However, they were split on opinion about social maturity concerns for accelerated students; 31% said they were socially mature, and 50% said they were not socially mature.

Overall, Siegle et al. (2013) found a high confidence level for acceleration, and educators felt that acceleration was an effective option. The teachers in this sample appeared to support A Nation Deceived (Colangelo et al., 2004) as a viable option and countered some former views previously held by educators. Only one fourth still had reservations, and the authors recommended a more proactive approach to “influence pre-service teachers during their teaching preparation” (p. 45).

The studies by Cohen (2011), Lee et al., (2010), and Siegle et al., (2013) appear to add support to the information found in A Nation Deceived (Colangelo et al., 2004) and indicate that this body of knowledge is having a positive impact on educators. The need for speed appears to be supported by changes to the speed limits so our gifted and talented learners can open up their sport cars and fly to their desired destinations with help and guidance along the way.

REFERENCES

Linda N. Lucksinger, Ph.D., is Professor of Education and Chair of the Department of Teacher Education at Angelo State University in San Angelo, TX. She has a combination of 40 years of teaching experience in public schools and in public and private universities. She has been a member of TAGT for many years and is the former TAGT Region 18 Gifted & Talented Advocate of the Year. Dr. Lucksinger is the author of several articles on gifted and talented topics and has numerous conference and workshop presentations. She credits her life-long concern for the needs of gifted and talented children to her years in the public schools and to her early GT mentors: Dr. Bill Nash (TAMU-College Station), Dr. Susan Johnsen (Baylor University), and the late Dr. Patricia Haensly (TAMU-College Station). Dr. Lucksinger may be contacted at llucksinger@angelo.edu.
WHAT THE RESEARCH SAYS ABOUT
While schools are being held accountable for equitable achievement outcomes for all of their students (Adelson & Carpenter, 2011), many gifted and talented children’s progress is restricted by an invisible ceiling of graded, group-paced curriculum (Lee, Olszewski-Kubilius, & Peternel, 2010). To counteract the limited growth of these advanced students and increase curricular flexibility, researchers propose ability grouping and acceleration as an effective means of instructional intervention for gifted students (Adelson & Carpenter, 2011; Howley et al., 2012; Lee et al., 2010; Rambo & McCoach, 2012; Steenbergen-Hu & Moon, 2010).

Acceleration is defined as an instructional intervention based on “progress through an educational program at rates faster or at ages younger than conventional” (Pressey, 1949, p. 2). Colangelo, Assouline, and Gross (2004) presented a comprehensive review of acceleration in their classic publication, A Nation Deceived: How Schools Hold Back America’s Brightest Students. This report identified 18 types of acceleration, including early admissions, Advanced Placement (AP), and grade skipping. The authors stated that with careful planning most accelerative options are effective and cost efficient in meeting the needs of advanced learners.

Grouping gifted students together is another strategy that has shown positive effects for gifted and talented students (Tieso, 2003). Because of its effectiveness, the National Association for Gifted Children (NAGC; 2009) published a position paper on grouping outlining the purposes for grouping and types of group-
ing practices. According to NAGC, there are four purposes for grouping gifted students: (a) to increase the ease of delivering differentiated curriculum, (b) to facilitate the use of differentiated instructional strategies, (c) to address specific affective needs, and (d) to allow learners to interact with other learners of similar abilities. They described two general categories of grouping: ability grouping and performance grouping. Ability grouping places students of similar ability together while performance grouping places students with similar achievement levels together.

Although a number of meta-analytic studies have been conducted (Kulik & Kulik, 1982, 1992; Slavin, 1987, 1990) showing the positive effects of grouping and acceleration, this review includes more recent articles published since 2004 in Gifted Child Today, Gifted Child Quarterly, Journal for the Education of the Gifted, Journal of Advanced Academics, and Roeper Review. We included empirical studies focusing on grouping and acceleration and articles that summarized prior research. Using these criteria, we found 26 articles.

Twelve of the studies used quantitative methods in their research (Adelson & Carpenter, 2011; Brulles, Peters, & Saunders, 2012; Burney, 2010; Kanovsky, 2011; Preckel & Brull, 2008; Richards & Omdal, 2007; Siegle, Wilson, & Little, 2013; Steenbergen-Hu & Moon, 2010; Suldo & Shaunessy-Dedrick, 2013; Tieso, 2005; Vogl & Preckel, 2014; Young, Worrell, & Gabelko, 2011), five studies were qualitative (Hallett & Venegas, 2011; Hertberg-Davis & Callahan, 2008; Howley et al., 2012; Richards & Omdal, 2007; Suldo & Shaunessy-Dedrick, 2013), six studies included students from elementary to postsecondary (Adams-Byers et al., 2004; Brulles et al., 2012; Kanevsky, 2011; Lee et al., 2010; Steenbergen-Hu & Moon, 2010; Young et al., 2011), and three studies involved perceptions or input from college students, educators, and/or parents (Hallett & Venegas, 2011; Schultz, 2012; Siegle et al., 2013).

GROUPING

Grouping was discussed in 12 articles (Adams et al., 2004; Adelson & Carpenter, 2011; Brulles et al., 2012; Brulles & Winebrenner, 2011; Kanovsky, 2011; Neihart, 2007; Preckel & Brull, 2008; Reed, 2004; Richards & Omdal, 2007; Tieso, 2005; Vogl & Preckel, 2014; Ysseldyke et al., 2004) with three of these specifically focusing on the use of differentiation (Kanovsky, 2011; Reed, 2004; Tieso, 2005).

The effects of grouping on achievement in core academic areas were examined in two studies. Tieso (2005) found that ability grouping for instruction resulted in significant achievement gains in mathematics, particularly when using specialized curricular materials. Similar results were found in reading when Kindergarten children were grouped by performance (Adelson & Carpenter, 2011). In this case, smaller group sizes appeared to be related to higher reading achievement.

The social and emotional effects of grouping were also highlighted in three studies. In her review, Neihart (2007) reported these benefits of grouping: greater development of students’ career interests, higher motivation, healthier social relationships, and more favorable attitudes towards the subject matter. Similarly, Vogl and Preckel (2014) found a positive relationship between the development of acceptance and interest in school for gifted students when they attended special classes for the gifted. The experience of working with equally able peers seemed to foster a positive classroom environment and a sense of social acceptance. Preckel and Brull (2008) also reported an increase in social self-concept when gifted fifth-grade students were placed in ability groups.

Two studies examined the perspectives of teachers and students toward differentiation. Reed (2004) provided a teacher’s perspective on differentiation within a heterogeneously grouped classroom. In the article, the teacher discussed three differentiation practices: application and extension of class work, open-ended question investigation, and student-selected problems. Likewise, Byers et al. (2004) explored the perspectives of gifted students toward differentiation when they were placed in homogeneous and heterogeneous groups. They found that students in fifth through eleventh grades believed that they learned more when in homogeneous groups. When students were heterogeneously grouped, they found the work to be easier and less challenging.

Five of the studies addressed how grouping and/or differentiation...
affected students not identified as gifted or talented. Using the school-wide cluster-grouping model (SCGM), Adams et al. (2004), Brulles et al. (2012), and Brulles and Winebrenner (2011) examined its benefits with all students. They reported that the SCGM was an inclusive program with flexibility and creativity that met the needs of a diverse population. They found that the cluster-grouping model did not negatively impact students who were not advanced in mathematics achievement but positively impacted gifted students. Similarly, Richards and Omdal (2007) reported that tiered instruction in a high school science classroom was not only positive for gifted learners but also beneficial for lower level learners. In terms of student preferences toward grouping and other forms of differentiation, Kanevsky (2011) reported some differences between gifted and nongifted students. She concluded that assessing and responding to each student’s preferred form of differentiation is good instructional practice.

ACCELERATION

There were 15 articles that discussed acceleration (Burney, 2010; Colangelo et al., 2010; Gross & van Vliet, 2005; Hallett & Venegas, 2011; Heilbroner et al., 2010; Hertberg-Davis & Callahan, 2008; Howley et al., 2012; Lee et al., 2010; Maggio & Sayler, 2013; Schulz, 2012; Siegle et al., 2013; Steenbergen-Hu & Moon, 2010; Suldo & Shaunessy-Dedrick, 2013). Four articles provided insight about Advanced Placement courses, two articles explored elements of the International Baccalaureate program, and one article examined an honors course (Howley et al. 2012).

Three articles summarized the literature on acceleration practices. Colangelo et al. (2010) reviewed key elements for an acceleration policy that were characterized by accessibility, equity, and openness. Neihart (2007) reported that when students were chosen for acceleration based on social, emotional, and academic maturity rather than solely on intelligence or achievement, there were socioaffective benefits. For students who were radically accelerated, Gross and van Vliet (2005) reviewed case studies and cohort studies and reported no indications of social-emotional maladjustment but high levels of academic success. Overall, researchers found that acceleration tended to have a positive impact on high-ability learners’ academic achievement and social-emotional development (Siegle et al., 2013; Steenbergen-Hu & Moon, 2010).

The implementation and evaluation of the effects of acceleration programs, including Advanced Placement and International Baccalaureate, were examined in the majority of the remaining studies. At the elementary level, Ysseldyke et al. (2004) studied achievement of elementary students who used the Accelerated Math (AM) program. They found that both gifted students and their non-identified peers benefited from AM but gifted students had greater performance increases. They noted that the use of self-paced instruction had positive effects on all students in the classroom. Similarly, Maggio and Sayler (2013) described the implementation of a pilot program that accelerated gifted students and their peers. Conducted over the course of a 3-year period, the authors found that students who otherwise might not have been identified as being mathematically talented were also served.

At the secondary level, the academic and affective effects of Advanced Placement (AP) and International Baccalaureate programs as well as their implementation were examined in four studies. Researchers reported that while most students viewed the AP and IB curriculum favorably, they recommended that student learning experiences might be enriched by emphasizing the benefits of challenging courses, providing consistent and comprehensive teacher training in differentiation and varied instructional strategies, improving equity in the courses, and investigating options for learners beyond AP/IB courses (Hertberg-Davis & Callahan, 2008). In terms of IB’s affective effects, freshmen high school students exhibited higher perceived stress but similar or better psychological functioning than students in general education (Suldo & Shaunessy-Dedrick, 2013). In terms of long-term effects of advanced courses, Hallett and Venegas (2011) interviewed four college students who had previously taken AP courses. The students observed that the quality of AP courses were not necessarily adequate preparation for college.

Burney (2010) investigated school variables that influenced implementation of AP and its consequent influence on student achievement. Fourteen variables were grouped into three factors: (a) fixed contextual variables, (b) contextual variables, and (c) variables indicative of district support for high-ability learners. She found that fixed factors such as the size of the senior class, the general ability level of the seniors, and the proportion of students with the potential to perform well in AP were most predictive of student achievement.

At the college level, an evaluation of an early entrance program and an honors program were studied. The Program for Exceptionally Gifted (PEG), an early entrance college program, showed that participants viewed it as a stepping-stone to other
opportunities and more select colleges (Heilbronner et al., 2010). In this study, the importance of screening students for success within early college acceleration programs was stressed. In an honors teacher education program, students and professors reported that while inquiry and research were both crucial, not all students valued enrollment in the honors program as much as the traditional courses (Howley et al., 2012).

The effects of acceleration were also studied in special populations—minority, low socioeconomic, and twice-exceptional students. Gifted minority students perceived acceleration in math as exciting, challenging, and beneficial while teachers believed that acceleration enhanced the students’ academic achievement (Lee et al., 2010). In studying the success of students from low-income backgrounds in accelerated and enrichment courses, Young et al. (2011) examined predictors of achievement in these two different kinds of courses. Grade point average (GPA), socioeconomic status, and test scores predicted achievement in accelerated courses and GPA, age, and ethnicity predicted achievement in enrichment courses. For twice-exceptional students (i.e., those who are both gifted and have a specific learning disability) to participate in AP courses and for-college-credit courses, parents, teachers, and guidance counselors considered school culture as playing a major role in enrollment decisions (Schultz, 2012). The need for professional development for teachers in regards to Individualized Education Plans and 504 plans was highlighted as well as the inconsistent implementation of environmental and testing accommodations.

In reviewing these articles, the positive note for general and gifted educators is that there are plenty of research-based articles that have shown the benefits and potential issues of grouping and acceleration. The articles provide perspectives of students, educators, and parents as well as provide specific applications for those interested in implementing either approach to enhance the education of gifted students.

REFERENCES

The purpose of this mixed-methods study was to explore the perceptions of gifted students in homogeneous and heterogeneous groups. Both academic and social-emotional effects were investigated. There were 44 students in grades 5–11 who participated in the summer residential program for gifted students at a large midwestern university. Students appreciated having a diverse group of friends in heterogeneous classes but they also noted valuing gifted peers/friends in homogeneous classes. Overall, participants seemed to perceive homogeneous grouping positively for academic outcomes, noting that they learned more in the challenging environment. However, some of the students preferred the heterogeneous classes because the work was easy. This study has additional implications for counselors and educators of gifted students such as providing more challenging activities or outside opportunities for gifted students to learn.

This quantitative study examined the relationship between achievement grouping and kindergartners’ growth in reading achievement. The researchers also examined the relationship between the size of achievement groups and reading achievement...
growth in Kindergarten. The use of a national database representing Kindergartners in fall 1998–1999 provided the researchers with a sample size of 9,340 students in 1,690 classrooms in 580 different schools. The results of the study showed that grouping by achievement had a statistically significant effect on reading growth. However, the findings showed that as the average number of students per achievement group increased (more than 10 students per group), reading growth decreased. The study also focused on reading growth for students participating in gifted programs. Although overall reading growth of students participating in the gifted program was less than their general education peers, the GT students experienced greater growth than their general education peers when they were in classes using achievement grouping. The researchers suggested the use of smaller size achievement groups because the strategy increased reading achievement gains for all Kindergarten children.

This quantitative action research study examined mathematics achievement within a district that used a schoolwide cluster grouping model. Although previous research had found positive results of the cluster model for gifted students, the effects on nongifted students were the focus of this study. Mathematics achievement was analyzed for 3,716 students in second through eighth grade. There were 554 gifted students placed in gifted cluster classrooms, 535 nongifted students in the gifted cluster classrooms, and 2,627 nongifted students in nongifted cluster classrooms. The findings showed that nongifted students in the gifted cluster classes experienced a comparable level of mathematics growth than the nongifted students who were not in the gifted cluster classes.

Criteria for accepting students and gifted education services are not consistent and may fluctuate between schools and programs. The authors suggested that the diversity within the gifted population could not be met using one program model such as self-contained programs, pullout programs, content replacement classes, and cluster grouping. They described how the Schoolwide Cluster Grouping Model (SCGM) was a more comprehensive gifted program than any one program. The benefits of using such a model were numerous. Gifted students received full-time attention to their unique needs while remaining in heterogeneous classes with effective teaching. The SCGM was an inclusive program providing services for all gifted students based on their ability and potential. The authors then discussed the different grouping variations in the SCGM by showing the flexibility and creativity that could be used to meet the wide variety of the student population. Six different factors that may impact gifted cluster classes were examined, which included the number of sections within a grade level, schools with one or two sections in each grade, too many or too few gifted students in a gifted cluster classroom, combination/multi-age classrooms, high numbers of below-average students in a grade, and schools that departmentalize. Additionally, the article discussed the training necessary for teachers to go through for successful instruction in the SCGM. Prior research also showed that skilled cluster teachers incorporated acceleration, compacting, enrichment, independent studies, and flexible grouping into their regular instruction.

This quantitative study examined whether the variance in performance in high school could be explained by any of three sets of variables. The researchers used data collected by local school officials for an annual progress report to be submitted to the State Education Agency (SEA). The data included 339 public high schools in a midwestern state. The study considered 46 variables affecting high achievement, which was defined as the ratio of the number of passing AP exams scores in a given year to the number of students in the graduating class. After examining these variables, 14 were retained and grouped into three factors: (a) fixed contextual variables at the high school level, (b) contextual variables educator and policy-makers have more control over modifying, and (c) variables indicative of district support for high-ability learners.

A hierarchical linear regression was used and the results showed that more than half of the variance (63.1%) was explained by the fixed factors related to the high school context. These factors included the size of the senior class, the general ability level of the seniors, and the proportion of the students with the potential to perform well in AP classes. Factors controlled by the high school also explained a good part of the variance (17%); these included availability of advanced academics and the number of students seeking more in-depth tests. A small portion of the variance (.7%) was explained by the district support (i.e., percentage of the district identified as high-ability and the number of academic extracurricular activities and competitions). This study had some
limitations such as using solely school-level data from one state and excluding some of the variables collected in the analysis.

The purpose of this article was to use prior research to form a set of guidelines for academic acceleration. The authors started by describing the categories, forms, and types of acceleration. They then listed the five key elements of an acceleration policy: it must (a) be characterized by accessibility, equity, and openness; (b) provide guidelines for the implementation of acceleration; (c) provide guidelines on administrative matters in order to guarantee systematic and fair use of acceleration and selection of participants for the opportunities; (d) provide guidelines for the prevention of non-academic barriers to acceleration; and (e) include features that prevent unintended consequences. Considerations and recommendations for implementation were also made and were broken into three issues: referral and screening, assessment, and decision-making. Three factors to consider in the evaluation of an acceleration policy were also included: (a) an assessment of academic performance of the accelerated student, (b) students' behavioral and social adjustments, and (c) degree of acceleration.

This article provided a review of individual case studies and cohort studies that had been conducted on radical acceleration. Radical acceleration referred to acceleration procedures designed to lead to school graduation three or more years early. In examining the case studies, the authors reported the importance of family support and social-emotional considerations for students. Advantages of dual enrollment such as experiencing college without being fully enrolled were examined as well as other ideas for ways that students might use their time after graduating college early such as pursuing advanced degrees and studying abroad. Students who participated in radical acceleration programs were high achievers and experienced no social-emotional maladjustment. In examining the cohort studies, students experienced high levels of academic success and did not suffer social-emotional maladjustment similar to the case studies. In addition, students were able to connect with others who were also participating in radical acceleration. The authors noted that it was imperative that appropriate screening occur to ensure students were socially, emotionally, mentally, and academically ready for a radically accelerated program.

This qualitative study examined how to increase low-income students' access to Advanced Placement (AP) courses in urban high schools. The participants in the study included 48 college-bound students who had taken AP courses during high school. The students all met requirements for the federal free/reduced lunch program. The researchers conducted a 30-minute semi-structured interview with each participant and observed them in the 5-week summer bridge program. The findings showed that students from low-income and minority backgrounds took AP courses if given the opportunity. In addition, these students participated in the end-of-course AP exams, but their passing rate was low. The students reported that the AP classes they took were of low quality. This study showed that increased opportunity to take AP courses did not result in positive experiences and adequate preparation for college.

This article looked at an early college entrance program as a form of acceleration. A mixed-methods approach was used to explore the reasons for attrition at an early college acceleration program for females. Mary Baldwin’s Program for the Exceptionally Gifted (PEG) was examined in this study. The students median age when they entered PEG was 15 years. Forty-three participants responded to the survey, which included questions about demographic information, reasons for entering PEG, reasons for leaving PEG, an academic subscale, and four open-ended questions. The participants viewed PEG as a stepping-stone from high school to a prestigious university. One of the main reasons for leaving was their desired major was not offered at Mary Baldwin College. Additional reasons cited included wanting to be in a larger city, a larger university, and a coed learning environment. The importance of screening students prior to admittance to early college acceleration programs to ensure a proper fit between the student and the program was highlighted.

The purpose of this qualitative study was to investigate how gifted high school students evaluated and perceived the Advanced Placement (AP) and International Baccalaureate (IB) curriculum, instruction, and environments. There were 200 U.S. high school students who provided interview data. The data suggested that students viewed the challenge and the environment of AP and IB courses as favorable but the curriculum and instruction might not have been a good fit for all learners, specifically those from underserved populations. Excerpts from the interviews are presented in the study to provide additional insight. The authors provided five recommendations for enriching the learning experiences of students in IB and AP classrooms: (a) emphasize the benefit of the challenging AP/IB courses, (b) provide consistent and comprehensive teacher training, (c) make achieving equity in the courses a priority, (d) train teachers on differentiation and varied instructional strategies, and (d) investigate options for learners beyond AP/IB courses.

This qualitative study evaluated an Honors Program (HP) by identifying student and faculty perspectives and experiences with the program. The study included an online survey completed by 20 students and five faculty members and a semi-structured interview conducted with nine students and eight faculty members. The analysis of the results showed that all of the participants acknowledged the central role and importance of inquiry in HP courses. Both faculty and students valued research and inquiry. Students mentioned that HP courses provided them with the benefit of developing relationship with talented peers; however, students noted that HP courses were not as valued by the teachers as the traditional courses. Furthermore, students explained that the program did not focus enough on leadership. The findings of this study paralleled results from prior studies.

This study examined the preferences of students (gifted and non gifted) towards types of differentiation in their favorite school subject. Participants were 646 students in grades 3 through 8 from a suburban school district in Canada and a suburban school district in the United States. The participants included 416 gifted students enrolled in a part-time pullout program. All students completed the Possibilities for Learning (PFL) survey that asked them to rate their preference for learning experiences on a 5-point Likert scale. The author reported these results: (a) students preferred some forms of differentiation over others, (b) a large number of practices recommended for gifted students were enormously popular with all students, and (c) no single item or form of differentiation was unanimously preferred. Self-pacing, choice of topic, and choice of group workmate came the closest to being the most liked by all students. When it came to gifted students, they preferred complex content and problems, pursuing their own interest in “weird” topics, understanding interconnections between ideas, and collaboration with others. Regarding pacing, gifted students enjoyed self-pacing, but their least favorite method was working under pressure to catch up after an absence. For collaborative learning, all students preferred to work with peers of their own choosing and with others who learned at the same pace. Additional categories of learning preference were discussed in this study including choice, curriculum content, evaluation, and teacher-student relationships. The author suggested that the best practice would be to assess each student’s learning preference.

This qualitative study examined the perceptions and experiences of gifted minority students and their teachers about an accelerative program in math, Project EXCITE. The study included seven teachers and 30 students in fourth through ninth grades who participated in Project EXCITE. Students who were accelerated in math formed one group (n = 17). The group was then divided into two subgroups: successfully accelerated (n = 12), which represented the students who were performing well in their math courses, and unsuccessfully accelerated (n = 5), which represented the students who were accelerated but needed to repeat the course based on previous performance. The students who had not yet been accelerated formed the second group (n = 13). All participants answered a semi-structured 45- to 60-minute interview focused on perceptions of advanced math/or accelerated placement, students’ experiences with and performances in accelerated classes, and peer relationships following acceleration. The findings of the study showed that for accelerated students, advanced math courses were not generally perceived as difficult. In addition, the most positive aspect of accelerated math courses was the academic challenges. Accelerated students also reported enhancement of motivation and confidence as a result of being
in these classes. The majority noted that they did not perceive negative peer pressure or competition in such courses, but less than half of the accelerated students stated that they made new friends in their advanced classes. For students who were not accelerated, they perceived advanced math as more difficult than the regular math. Half of this group stated that acceleration would enhance their academic confidence, but they would need to study more, harder, and more intensively. When it came to teachers’ perspectives, all teachers supported acceleration, especially for gifted students, and they agreed that social and emotional readiness must be assessed before making acceleration decisions. In addition, the majority of the teachers mentioned a relationship between acceleration and peer pressure. The findings of this study supported the use of acceleration for gifted minority students in math. However, one limitation was that the study was conducted using students from one accelerated program. Further research should examine other acceleration programs and the long-term effects of such programs.

The purpose of this 3-year study was to report how a school district in Texas was able to identify and meet the needs of mathematically advanced elementary students. A multiple pilot program was implemented that started with a small group of students at one school being offered a moderate level of acceleration. It expanded to an option offered to all students within the district by the third year. Through implementation of the accelerated mathematics program, students who otherwise may not have been identified as being mathematically talented were able to be served. The article shared information about the process

the district used in their pilot program to become aware of the student needs, how they identified students for acceleration in math, and how they implemented the program.

This article provided a comprehensive review of socioaffective impacts of ability grouping and acceleration. Early school entrance, early admission to college, and grade skipping had socioaffective benefits when the students were chosen based on demonstrated social, academic, and emotional maturity; however, they had harmful effects on students who were accepted solely based on achievement, IQ, or social maturity. Some of the benefits included positive self-esteem, advanced social maturity, social leadership, and higher educational aspirations. There was less research on socioaffective effects of peer ability grouping. However, some of the benefits included greater development of students’ career interests, higher motivation, healthier social relationships, and more favorable attitudes toward the subject matter. The authors concluded by offering specific best practice recommendations for both acceleration and peer ability grouping.

This study examined the effect of ability grouping on self-concept (social and academic) and gender differences. The study was conducted in Germany and was longitudinal. The researchers followed the participants from elementary school to the top track of the German school system. The participants included students from fifth grade ($N = 211$) with 50% female. Of the total sample, 46 students (33% female) were in special homogeneous classes for the gifted and the rest were in regular classes. Participants responded to a self-report instrument once during the first week of school, 10 weeks later, and at the end of the term. The findings showed that all students reported a decrease in general academic self-concept—more specifically in math and academic self-concept in the German language. However, for gifted students, there was an increase in social self-concept. Regarding gender differences, the decrease in academic self-concept was largest for girls in special gifted classes when compared to girls in regular classes and to boys in both class types.

In this descriptive study, a high school mathematics teacher described her experience with differentiation in a heterogeneously grouped geometry classroom. The author described three differentiation opportunities: (a) application and extension of class work, (b) open-ended question investigation, and (c) student-selected problems. Within each of the opportunities, process, content, and product differentiation were provided. Additionally, the author shared her experience working with students who may be content to remain disengaged and speculated that early differentiation may have helped.

This article explored the relationship between tiered instruction and academic performance in science. There were 388 freshman students from an
urban school district in Washington state who were part of this quantitative study. The students were separated into a control science classroom and an intervention classroom where tiered instruction was utilized. There were three levels of instruction: high, middle, and low matched to background knowledge. The control classrooms used instruction geared to the middle level. The results indicated that there was a significant difference between the scores of low background knowledge students who were in tiered classrooms and those that were in the control classrooms favoring the former. Tiered instruction may be extremely beneficial for lower level learners. Teachers needed to have a strong background in the subject area to understand the range of learners, know how to systematically implement tiered instruction, and receive support.

This study examined the perspectives of parents, teachers, and guidance counselors regarding participation of twice-exceptional students in Advanced Placement (AP) and for-college-credit classes. Semi-structured interviews were conducted during the 2005–2006 school year with 12 parents, 12 teachers, 6 guidance counselors, and 6 college students who had taken AP and/or for-college-credit classes. The interviews focused on determining if the supports and barriers suggested by parents, teachers, and guidance counselors influenced the high school experience of students. The findings suggested that parents, teachers, and guidance counselors defined successful AP participation by exams and course grades, while the college students defined their success by the amount of information they had learned and retained. The majority of parents, teachers, and guidance counselors considered school culture as a major role in enrollment decisions. Many of the students shared that they did not receive the full benefits of their IEPs or 504 plans when attending AP and/or for-college-credit classes. All participants mentioned that some students were capable of attaining success in more challenging courses but lacked the confidence and support to take the risk. Overall, the results of this study indicated that the school culture played a role in enrolling twice-exceptional students in AP or for-college-credit classes. The author suggested the need for professional development of all teachers regarding IEPs and 504 plans, as well as exposure to the special education system.

The purpose of this quantitative study was to examine gifted and talented educators’ attitudes about acceleration. There were 152 educators who participated in the study. The average number of years of professional experience was 15.4 years, and the most popular grade taught was third grade. The researchers asked the participants about their concerns and beliefs about acceleration and different acceleration options. Most educators were not concerned about acceleration having a negative effect on achievement, developmental and age-related issues, and participation in extracurricular activities. They shared mixed perceptions about social-emotional concerns related to acceleration. The least popular acceleration strategies (i.e., grade-skipping) were the easiest to implement. There
were no significant differences in attitudes between teachers from urban, suburban, or rural school districts.

This meta-analysis addressed four main questions: (a) How does acceleration affect high-ability learners’ academic achievement? (b) How does acceleration affect high-ability learners’ social-emotional development? (c) What differences exist between content-based acceleration and grade-based acceleration in terms of their effects on high-ability learners? (d) What moderators are significantly associated with the effects of acceleration on high-ability learners? The meta-analysis included 38 studies conducted between 1984 and 2008 that were coded by two individuals with an agreement rate of 75%. The results revealed that acceleration improved high-ability learners’ academic achievement and had positive effects on academic achievement for both P–12 and postsecondary students. The positive effect on academic achievement due to acceleration was more discernible when accelerated high-ability learners were compared with their non-accelerated same-age peers. The results also suggested that the effect of acceleration in high-ability learners’ social-emotional development was slightly positive. When comparing content-based acceleration and grade-based acceleration, the results showed no significant differences between their effects on academic achievement or social-emotional development. In addition, there was no strong evidence suggesting that any factor significantly moderated the effect of acceleration on high-ability learners’ academic achievement or social-emotional development. The authors suggested that the results could be helpful to parents and students in making decision regarding acceleration.

The purpose of this study was to determine if participation in the International Baccalaureate (IB) program for freshman was associated with psychological problems or an increased level of stress. There were 134 students who participated in the quantitative study. Self-report data were collected at two different times—the summer prior to entering high school and during the fall of their freshman year. Ninth-grade students in the IB program reported higher levels of perceived stress than students in general education. The levels of stress were also higher than they had reported prior to entering high school. Psychological functioning (social anxiety, psychopathology, life satisfaction) was statistically similar or better than those reported by their general education peers.

This study examined the effect of curricular adjustments and grouping (whole, between, and within-class) practices on students’ math achievement. The study was conducted in New England and included 31 teachers in grades 4 or 5. The classes (teacher and their students) were randomly assigned to one of the following groups: (a) comparison group, where the teacher taught the content using the regular textbook without any supplements to the whole class; (b) Treatment 1 Group, where the teacher used a unit binder created by the researcher with whole-class instruction; (c) Treatment 2 Group, where the teacher used a unit binder created by the researcher with within-class groups; or (d) Treatment 3 Group, where the teacher used a unit binder created by the researcher with between-class groups. All students completed a pre- and post-curriculum-based assessment. The findings showed that when looking at whole class instruction, the Treatment 1 Group scored higher on the posttest than the comparison group. In addition, when looking at curricular adjustments, students who received the unit binder (all treatment groups) showed a higher mathematics achievement than students in the comparison group. The results showed that grouping by ability for instruction resulted in significant math achievement gain.

This study examined the different trajectories in the development of social self-concept and school-related attitudes between gifted students and their peers. To minimize the difference between the two groups (gifted and nongifted students), students were matched for cognitive ability, sex, socioeconomic status, and school to form 99 similar pairs (N = 198). These students were studied for a year and a half, starting in fifth grade. Social self-concept was assessed using a scale focusing on social self-concept acceptance and social self-concept assertiveness. For school-related attitudes, three domains were covered: student-teacher relationship, social tension, and interest in school. The results showed that the social self-concept of acceptance was affected positively at the initial attendance of gifted classes, while the self-concept assertiveness was not affected. In addition, gifted students showed a stable interest in school.
and student-teacher relationships, while students in the regular classes showed a decline in these areas. Given the positive relationship between the development of social self-concept of acceptance and the development of school-related interest while attending special classes for the gifted, the authors concluded that full-time ability grouping fostered social acceptance and a positive class atmosphere.

The purpose of this quantitative study was to examine whether background and prior achievement predicted success in a university’s summer enrichment mathematics courses. There were 459 students who participated in the 6-week accelerated and enrichment summer courses. The students ranged in age from 11 to 16 years in the accelerated-course sample and ranged from 10 to 16 years for the enrichment course sample. Grade point average (GPA), socioeconomic status, and diagnostic test scores in mathematics significantly predicted achievement in accelerated courses. GPA, age, and ethnicity significantly predicted achievement in enrichment courses.

This study used qualitative and quantitative methods to evaluate the effect of a self-directed mathematics program on the math achievement of gifted and talented students. Accelerated Math (AM), an instructional management system, was used in the experimental classroom to provide instruction and to monitor students. The study included four groups of students from grades 3 through 6: (a) 48 gifted and talented students enrolled in classes that used the AM programs—experimental, (b) 52 gifted and talented students who did not receive AM program, (c) 743 nongifted and talented students who participated in the AM program, and (d) 736 nongifted and talented who did not receive the AM program. All students completed the STAR math as a pretest and posttest measure of mathematic achievement. The results of the study suggested that, in general, gifted and talented students did not attempt any more practice items when compared to nongifted students. However, the nongifted students got a smaller percentage of their practice items correct. Regarding the test items, gifted and talented students attempted more items and were able to get a higher percentage correct than their nongifted and talented peers. Overall, gifted students did benefit from access to AM programs. Those who participated in the AM programs showed significant increases in performance, especially the gifted and talented students. The authors suggested that individualized and self-paced instruction in mathematics should be used to differentiate instruction and meet the needs of gifted and talented students.

Yara N. Farah is a doctoral student in the Department of Educational Psychology at Baylor University. Her research interests related to gifted education, mathematics enrichment in inclusive classrooms, and twice-exceptional students.

Sonia L. Parker is a doctoral student in the Department of Educational Psychology at Baylor University. Her research interests relate to adult learning, training and development, and organizational behavior.

Susan K. Johnsen, Ph.D., is professor in the Department of Educational Psychology at Baylor University where she directs the Ph.D. program and programs related to gifted and talented education. She is the author of more than 200 publications including *Identifying Gifted Students: A Practical Guide*, books related to implementing the national teacher preparation standards in gifted education, tests used in identifying gifted students, and is editor-in-chief of *Gifted Child Today*. She serves on the Board of Examiners of the National Council for Accreditation of Teacher Education and is a reviewer and auditor of programs in gifted education. She is past president of The Association for the Gifted (TAG) and past president of the Texas Association for the Gifted and Talented (TAGT). She may be reached at Department of Educational Psychology, Baylor University, One Bear Place #97301, Waco, TX 76798 or susanjohnsen@baylor.edu.

FROM THE EDITOR

Continued from page 4 that could make a positive difference in the learning experiences of gifted students.

REFERENCES

Call For Manuscripts

Here is your chance to have your voice heard! If you would like to be considered for publication in an upcoming issue of TEMPO, please follow the guidelines for article submissions below. We are currently soliciting manuscripts for the following issues. The TAGT Editorial Board identifies themes for upcoming issues of TEMPO and appreciates articles that are submitted for possible publication tied to the noted themes. The Editorial Board also encourages researchers/authors to submit articles that are not tied to a particular theme. Some issues may include more than one theme based on articles submitted. For more details, please contact TEMPO editor Krystal Goree at Krystal_Goree@baylor.edu.

<table>
<thead>
<tr>
<th>Equity in Gifted Education</th>
<th>Advocating for the Gifted</th>
<th>Underserved Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>due July 1, 2015</td>
<td>due October 15, 2015</td>
<td>due January 10, 2016</td>
</tr>
</tbody>
</table>

Guidelines for Article Submissions

TEMPO welcomes manuscripts from educators, parents, and other advocates of gifted education. Manuscripts may focus on all areas ofgifted/talented education including policies, applications of research, programs, and practices. TEMPO is a juried publication and manuscripts are evaluated by members of the editorial board and/or other reviewers.

Please keep in mind the following when submitting manuscripts:
1. Manuscripts should be 2,000 to 10,000 words on a topic related to gifted education.
3. Submit an electronic copy, typed, 12 pt. font, double-spaced manuscript. Use a 1 1/2” margin on all sides and number pages.
4. In addition to the title page, a cover page must be attached that includes the author’s name, title, school or program affiliation, home and work address, e-mail address, phone numbers, and fax number.
5. Place tables, figures, illustrations, and photographs on separate pages. Each should have a title and be referenced in the text. Submit electronically with manuscript.
6. Author(s) is fully responsible for accuracy of quotations, citations, figures, and facts.
7. Author(s) of accepted manuscripts must transfer copyright to TEMPO, which holds copyright to all articles and reviews.
8. Upon acceptance of a manuscript, the author(s) submits a 50–100-word biography and a 100–150-word abstract of the manuscript.

Please send manuscripts and inquiries to:
Krystal Goree, Ph.D.
TEMPO Editor
Krystal_Goree@baylor.edu
As a powerful voice for gifted students and a dynamic resource for educators and parents, TAGT continues to improve on the strong foundation of our past and the promise of our future.

TAGT connects and empowers educators and parents to meet the unique needs of gifted and talented students from every cultural background who see the world in unique ways and are developing minds that just might discover innovative answers to the most challenging questions of their generation.

Thinking Beyond
TAGT provides tools and resources to inspire students to fulfill their unique potential – beyond subject matter and grade level expectations.

Creating Connections
Involvement in TAGT is the most powerful way to guide gifted students in schools and in homes.

Shaping Opportunities
By leading relevant conversations, TAGT promotes awareness of effective gifted education strategies and the limitless possibilities represented in G/T students.

TAGT is proud to introduce the new association logo to our membership! Join with TAGT as we move forward and continue to positively impact the lives of the gifted and talented.
Event Details
April 13–14, 2015
Sheraton Austin Hotel at the Capitol
701 East 11th Street
Austin, TX 78701

Registration
Member Rate $205
Non-Member Rate $305

Deadline for Pre-Registration
April 8th

Hotel
$159 rate for single or double;
Reserve by March 18 to guarantee this rate.

Designed for experienced administrators, coordinators and specialists in gifted education. Attendees will have the chance to discuss best practices, innovative programs, current topics impacting the G/T community and much more!

Keynote Speaker
Ann Grady
Entrepreneur, author and expert in personal and organizational transformation

Presentation
The Influential Leader:
Success Strategies That Get Results

Register today!
For more information visit txgifted.org